
cuAlign: Scalable Network Alignment on GPU Accelerators
Lizhi Xiang

The University of Utah
Salt Lake City, UT, USA
xianglizhi456@gmail.com

Arif Khan
Meta

Menlo Park, CA, USA
arifkhan@meta.com

S. M. Ferdous
Pacific Northwest National Lab

Richland, WA, USA
sm.ferdous@pnnl.gov

SR Aravind
Meta

Menlo Park, CA, USA
aravind_sr@outlook.com

Mahantesh Halappanavar
Pacific Northwest National Lab

Richland, WA, USA
hala@pnnl.gov

ABSTRACT
Given two graphs, the objective of network alignment is to find a
one-to-one mapping of vertices in one graph (𝐴) to vertices in the
other (𝐵), such that the number of overlaps is maximized. We say
that edges (𝑖, 𝑗) ∈ 𝐴 and (𝑖′, 𝑗 ′) ∈ 𝐵 are overlapped if 𝑖 is mapped
to 𝑖′ and 𝑗 is mapped to 𝑗 ′. Network alignment is an important
optimization problem with several applications in bioinformatics,
computer vision and ontologymatching. Since it is an NP-hard prob-
lem, efficient heuristics and scalable implementations are necessary.
However, a combination of combinatorial and algebraic kernels
within the network alignment algorithm poses significant hurdles
for parallelization. Further, load imbalance and irregular DRAM
traffic limit achievable performance on GPUs. In this work, we in-
troduce a novel framework (cuAlign) that combines intra-network
proximity using node (vertex) embedding, sparsification for com-
putational efficiency, and belief propagation (BP) and approximate
weighted matching for alignment. We demonstrate qualitative im-
provements up to 22% over state-of-the-art approaches. We provide
a scalable implementation targeting modern GPU accelerators. Our
novel approach identifies and exploits unique structural properties
of the BP-based algorithm and employs code fusion to reduce data
movement between different steps of the algorithm. Using a diverse
set of inputs, we demonstrate up to 19× speedup for belief propa-
gation, 3× speedup for approximate weighted matching, and 15×
total, relative to a state-of-the-art multi-threaded implementation.
ACM Reference Format:
Lizhi Xiang, Arif Khan, S. M. Ferdous, SR Aravind, and Mahantesh Halap-
panavar. 2023. cuAlign: Scalable Network Alignment on GPU Accelerators.
In Workshops of The International Conference on High Performance Com-
puting, Network, Storage, and Analysis (SC-W 2023), November 12–17, 2023,
Denver, CO, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3624062.3625129

1 INTRODUCTION
Network alignment is an optimization problem to find a one-to-
one mapping between the vertices of a pair of graphs such that
the number of overlaps is maximized. As a generalization of the

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3625129

graph isomorphism problem, it has several applications in domains
such as bioinformatics [1, 2, 21], computer vision [8], and ontology
mapping [11]. An illustration of network alignment is shown in
Figure 1, and a detailed formulation is provided in §2.

The setup begins with two input graphs, 𝐴 = (𝑉𝐴, 𝐸𝐴) and
𝐵 = (𝑉𝐵, 𝐸𝐵). A weighted bipartite graph 𝐿 = (𝑉𝐴 ∪ 𝑉𝐵, 𝐸𝐿) is
computed over the vertices of 𝐴 and 𝐵. Let 𝑀 be a matching on
𝐿 that maps the vertices of 𝐴 to 𝐵, where matching 𝑀 is a subset
of edges such that no two edges in 𝑀 are incident on the same
vertex. An edge (𝑖, 𝑗) in 𝐴 is considered as overlapped with an edge
(𝑖′, 𝑗 ′) in 𝐵 if the two edges (𝑖, 𝑖′) and (𝑗, 𝑗 ′) in 𝐿 are matched
in 𝑀 . The overlapped-edge relationship between a pair of graphs
is a generalization of triangular relationships in a single graph.
The objective of network alignment, also referred as the matched
neighborhood consistency [7], is to compute a matching𝑀 in 𝐿 that
maximizes the sum of the overlapped edges in 𝐿. In this paper,
we focus on the global network alignment problem that takes a
holistic view of the problem of aligning two graphs. The global
network alignment finds one-to-one mapping between vertices
in two netowrks whereas local network alignment finds many-to-
many mappings. Although the global network alignment problem
is shown to be NP-hard [12], several heuristics exist. A special case,
that we term as the full network alignment problem, arises when
𝐿 is a complete and weighted bipartite graph. This case arises in
the absence or limited amount of prior knowledge about the input
networks. Given the large search space (|𝑉𝐴 | × |𝑉𝐵 |), this case is
both computationally expensive and memory intensive, and has
therefore attracted extensive research on methodologies that avoid
full consideration [4, 11, 15, 18, 22].

We provide a brief overview of different approaches for network
alignment in §3. A large body of work in the current literature
focuses on the utilization of auxiliary information to prune the
feasible set of matches to a computationally tractable size. Further,
pruning of the feasible set has been demonstrated to improve the
quality of alignment by minimizing the impact of noise in domains
such as bioinformatics. However, there is a disconnect between the
research on generating feasible sets with prior knowledge and the
actual alignment algorithms that use the feasible set as an initial
solution. A key goal of our work is to design efficient algorithms
that leverage node embedding techniques to improve computational
efficiency. We detail this new approach in §4. We demonstrate the
efficiency of this approach, with up to 22% improvement in quality
over state-of-the-art techniques, as detailed in §6.

747

https://doi.org/10.1145/3624062.3625129
https://doi.org/10.1145/3624062.3625129
https://doi.org/10.1145/3624062.3625129
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3625129&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Lizhi Xiang, Arif Khan, S. M. Ferdous, SR Aravind, and Mahantesh Halappanavar

A BL

Overlap

wkk’k k’

i

j

i’

j’

Figure 1: An illustration of the alignment problem: Find
a subset of edges from 𝐿 that form a weighted matching
between 𝐴 and 𝐵 with as many overlaps as possible.

High computational costs of network alignment necessitates
efficient parallel implementations. Building on the multi-threaded
work of Khan et al., [12] we develop efficient GPU implementation
of our framework, cuAlign. We detail the challenges in paralleliza-
tion and our approach in §5. We demonstrate excellent speedups of
our implementation in §6.

The key contributions of our work are:
(1) We present a novel framework for network alignment by com-

bining the ideas of subspace alignment, node embedding, spar-
sification, belief propagation and weighted matching (§4).

(2) We demonstrate the efficacy of our approach using five inputs
and show up to 22% improvement in quality over the state-of-
the-art methods (§6).

(3) We develop an efficient GPU implementation, cuAlign, by care-
fully addressing different challenges (§5), and demonstrate up
to 15× total speed up (19× for belief propagation and 3× for
approximate matching) over a CPU-only implementation (§6).
To the best of our knowledge, it is the first GPU implementa-

tion of network alignment algorithm, and a framework to combine
different algorithms to achieve quality improvements that were
previously not possible. Given the importance of network align-
ment in several domains of science, we believe that our work will
benefit both researchers and practitioners in computer science and
application domains.

2 PROBLEM FORMULATION
In this section, we will formulate the Network Alignment problem
and define the preliminaries. Let 𝐴 = (𝑉𝐴, 𝐸𝐴) and 𝐵 = (𝑉𝐵, 𝐸𝐵)
be two input graphs, where 𝑉𝐴 (𝑉𝐵) and 𝐸𝐴 (𝐸𝐵) are the set of
vertices and edges of the graph 𝐴(𝐵). We assume |𝑉𝐴 | = |𝑉𝐵 | =
𝑛. This assumption is to keep the description of the algorithms
simple and does not sacrifice the generality. We also define 𝐿 as a
weighted bipartite graph between the vertex sets of 𝐴 and 𝐵, i.e.,
𝐿 = (𝑉𝐴 ∪𝑉𝐵, 𝐸𝐿,𝑤). Here,𝑤 is the weight function defined on the
edges of 𝐿. The graph 𝐿 is constructed from 𝐴 and 𝐵 (Figure 1).

A matching 𝑀 , of the graph 𝐿, is a subset of edges (𝑀 ⊆ 𝐸𝐿)
such that no two edges in𝑀 are incident on the same vertex. The
weight of the matching𝑀 is given by the summation of the weight
of the matched edges. We say that an edge (𝑖, 𝑗) in 𝐸𝐴 is overlapped
to an edge (𝑖′, 𝑗 ′) in 𝐸𝐵 if both (𝑖, 𝑖′) and (𝑗, 𝑗 ′) are in𝑀 .

Given 𝛼, 𝛽 ≥ 0, the network alignment problem is to find a
matching 𝑀 in 𝐿 that maximizes: 𝛼 × weight of matching + 𝛽 ×
number of overlapped edges. To encode this, we adopt an integer
quadratic programming framework [4, 5, 13]. Recall that𝑤 is the
weight function on the edges in 𝐿. We vectorize𝑤 and use𝑤𝑖,𝑖′ to
indicate an element of the vector, which is a weight on the edge
𝑖 ∈ 𝑉𝐴 to 𝑖′ ∈ 𝑉𝐵 . Let x be an indicator vector over the edges of 𝐿
in that same ordering of w, such that 𝑥𝑖,𝑖′ = 1 if the edge is in the
matching and 0 otherwise. The weight of the matching subset is
then given by the inner-product, x𝑇w =

∑
(𝑖,𝑖′) ∈𝐸𝐿 𝑥𝑖,𝑖′𝑤𝑖,𝑖′ .

Let C be the (|𝑉𝐴 | + |𝑉𝐵 |) × |𝐸𝐿 | node-edge incidence matrix of
the graph 𝐿. Then the constraint Cx ≤ e, where e is a vector of
all ones, enforces that x corresponds to a matching. In order to
compute the number of overlapped edges in 𝐴 and 𝐵, we introduce
the |𝐸𝐿 |×|𝐸𝐿 |matrix S, where the rows and columns of S correspond
to edges in 𝐸𝐿 . We set S(𝑖,𝑖′),(𝑗, 𝑗 ′) to 1 if (𝑖, 𝑗) ∈ 𝐸𝐴 and (𝑖′, 𝑗 ′) ∈ 𝐸𝐵 .
Otherwise, we set S(𝑖,𝑖′),(𝑗, 𝑗 ′) to 0. So, the number of overlapped
edges in 𝐴 and 𝐵 is given by, x𝑇 Sx

2 . Putting these altogether, the
Network Alignment problem can be formulated as the following
quadratic integer program:

max 𝛼x𝑇w + 𝛽 x
𝑇 Sx
2

subject to Cx ≤ e

𝑥𝑖,𝑖′ ∈ {0, 1},∀(𝑖, 𝑖′) ∈ 𝐿.

(1)

The complexity of the Formulation 1 depends on the size of 𝐿
and 𝑆 . Thus the construction of the bipartite graph 𝐿 is one of the
most important steps for our Network Alignment algorithm. One
may define 𝐿 as a complete bipartite graph known as full network
alignment. But, assuming |𝑉𝐴 | = |𝑉𝐵 | = 𝑛, this could result in𝑂 (𝑛2)
edges in 𝐿 and consequently𝑂 (𝑛4) nonzeros in 𝑆 . This would make
the problem computationally infeasible, and unimplementable to
GPUs due to the large memory requirement. Also, this dense graph
will likely be noisy and deter the alignment quality. One of the
contributions of this paper is to sparsify the complete graph such
that the number of edges remains 𝑂 (𝑛), thus improving both com-
putational and quality aspects of the alignment. The sparsification
is detailed in §4 and the impacts of sparsifications on runtime and
quality is shown in §6.

3 RELATEDWORK
Motivated by numerous applications, network alignment has been
studied extensively not only from an algorithmic perspective but
also application-specific perspective. The literature on network
alignment can be categorized in multiple ways. Algorithms can
be divided into local and global algorithms. We do not consider
local algorithms in this paper and refer to a recent survey for
details [2]. Global algorithms can be further classified into two
broad categories: those with prior information on potential align-
ment [4, 13, 27], and those without prior information [15, 16, 18, 22].
Many practical techniques exploit prior information in the computa-
tional pipeline. However, they can also include scoring components
that are computed without using prior information [18, 22].

The goal of solving the network alignment without prior infor-
mation is to estimate some information on how well graphs 𝐴 and
𝐵 align in a structural sense. The techniques used in [18, 22] are

748

cuAlign: Scalable Network Alignment on GPU Accelerators SC-W 2023, November 12–17, 2023, Denver, CO, USA

based on computing a signature score for each vertex in the two
networks. They measure the distances between vertices by com-
paring signature scores. Other approaches use information from
orthogonal projections of the adjacency matrices [9] or the graph
Laplacian [14] for slightly different types of signatures. Once they
compute the similarity scores between all vertices, the scores are
sparsified and rounded to get a matching. It is clear that these tech-
niques heavily rely on some form of vertex embedding in order to
compute vertex signatures.

The drawback of computing vertex signatures is that the signa-
tures are graph specific. In other words, the signatures are only
meaningful within the context of a specific graph, for example, in
comparing two vertices in the same graph. Comparing signatures
of two vertices, such as 𝑖 ∈ 𝐴 and 𝑖′ ∈ 𝐵, often leads to incorrect
conclusions even when those signatures are computed by using the
same vertex embedding algorithm [25]. Chen et al. [7] investigated
this vertex embedding issue and designed an optimal transport the-
ory based technique, which allows vertex signatures from different
graphs to be compared, and proposed a 𝑘-nearest neighbor (kNN)
based network alignment algorithm, called cone-align. However,
the kNN-based network alignment algorithm does not perform well
in real-world full network cases where the objective is to maximize
the number of overlapping edges.

Our work employs the vertex embedding technique of Chen et
al. [7] as the initial input to Problem 1, and then iteratively solves
it using belief propagation and graph matching algorithms. Since
network alignment is NP-hard, the best practical algorithms are
heuristic in nature. Therefore, including vertex embedding informa-
tion helps in guiding the algorithm towards better solutions both
in terms of quality and in terms computational efficiency. Thus, the
novelty of our approach comes from combining two independent
classes of algorithms for achieving quality that cannot be achieved
by individual approaches.

A class of approximation algorithms for network alignment are
based on linear programming relaxations of the quadratic assign-
ment objective [13] combined with rounding techniques [19]. We
observed that the results from belief propagation are nearly as good
as these techniques and can be parallelized efficiently. There are
also efficient heuristics that use a small set of aligned nodes to
complete the alignment to the rest of the graph [17]. The literature
on GPU implementations for network alignment is limited. Zhang
et al. [31]] proposed a Graph Convolutional Neural Network (GCN)
based network alignment algorithm, where they used GPUs for
GCN kernels implemented in Tensorflow.

A closely related problem is the the problem of subgraph iso-
morphism, which determines whether a given query graph 𝑄 is
isomorphic to a subgraph of a data graph 𝐺 . We note that, the
subgraph isomorphism problem is a special case of the Network
Alignment problem developed in Formulation 1 for 𝛼 = 0 and 𝛽 = 1.
Several works such as [30] and [29] developed GPU implementa-
tions to solve the subgraph isomorphism problem. These efforts
highlight the challenges associated with solving graph algorithms
on GPUs, especially the problem of load-balancing. However, net-
work alignment is more challenging that subgraph isomorphism
problem. Moreover, our work advances the algorithms used for
network alignment that achieve significantly higher quality when

compared to the state-of-the-art approaches. The proposed frame-
work is designed to subsume and benefit from advances in vertex
embedding and network alignment algorithms.

4 THE FRAMEWORK

Belief
Propagation

Approximate
Matching

Node
Embedding Sparsification

Input:
A=(VA, EA), B=(VB, EB)

Complete
L=(VL,E’L)

Sparse
L=(VL,EL)

Initial Knowledge Align Graphs

Output:
Φ: VA → VB

Figure 2: Computational framework of cuAlign that com-
bines node embeddings, sparsification, belief propagation
and approximate matching to compute high quality align-
ments.

We propose a novel GPU-accelerated network alignment frame-
work, cuAlign, as illustrated in Figure 2, which has the following
four building blocks.
(1) Node embedding provides a mechanism to include structural and

prior information necessary to sparsify the complete graph.
(2) Sparsification constructs the bipartite graph 𝐿. It reduces the

problem size from𝑂 (𝑛4) to𝑂 (𝑛2), thus enhancing the efficiency
and scalability of the framework.

(3) Belief propagation solves a relaxed version of the Network Align-
ment Quadratic Program (NAQP) on sparse bipartite graph, 𝐿.

(4) Weighted matching provides a “good” feasible alignment using
the solution obtained by the belief propagation.
As shown in Figure 2, the node embedding and sparsification are

part of initialization. These two steps together create the bipartite
graph 𝐿, and need to be executed only once. The two other blocks
run iteratively until a stopping criterion is met. We observe that
these two blocks also constitute the compute-heavy portion of the
framework. We therefore employ GPU algorithms to scale these
components (detailed in §5).

4.1 Embeddings and Sparsification
The goal of embedding the vertices of 𝐴 and 𝐵, is to represent each
vertex as a vector such that these vectors capture the relationship
between vertices within the context of the two graphs. A proper
embedding enables us to query the distance or similarity measure
of a vertex of 𝐴 to a vertex of 𝐵 and vice versa, which is necessary
to sparsify the complete bipartite graph.

Since we will employ the embedding to define a similarity or
distance measure of the inter-edges of 𝐴 and 𝐵 (i.e., the edges of 𝐿),
the embedding needs to incorporate the joint structural and a priori
information of both graphs 𝐴 and 𝐵. To facilitate this, we propose
to develop the node embedding in two steps. First, we use standard
proximity-based embedding methods to encode the proximity and
structural relation of the individual graphs. Embedding based on
node proximity preserves the neighborhood relationships, i.e., em-
beddings of the neighboring nodes tend to be close to each other for
some distance metric [6, 25]. Next, we align the subspaces of the
individual embedding vectors to generate the final embedding. Let

749

SC-W 2023, November 12–17, 2023, Denver, CO, USA Lizhi Xiang, Arif Khan, S. M. Ferdous, SR Aravind, and Mahantesh Halappanavar

𝑌1, 𝑌2 ∈ R𝑛×𝑑 be the node embedding generated from a proximity-
based embedding method for graphs 𝐴 and 𝐵 respectively, where 𝑑
is the size of the embedding. Also assume that 𝑃 is a permutation
on 𝑌1 and 𝑄 is a linear transform on 𝑌2. We solve the following op-
timization problem of finding a𝑄 that aligns the sub spaces defined
by 𝑌1 and 𝑌2 to get our final embedding vectors 𝑌𝐴 and 𝑌𝐵 , resp.:

min
𝑄∈O𝑑

min
𝑃∈P𝑛

| |𝑌1𝑄 − 𝑃𝑌2 | |22 . (2)

Equation 2, can be solved iteratively by using singular value
decomposition (SVD) and Sinkhorn optimization using super-linear
approximations. A detailed explanation of can be found in [7].

With 𝑌𝐴 and 𝑌𝐵 , we can now construct the weighted bipartite
graph 𝐿 = (𝑉𝐴∪𝑉𝐵, 𝐸𝐿). One option could be to create the complete
graph where the weight of an edge is some distance measure (such
as Euclidean or Cosine distance) w.r.t the embeddings of the two
endpoints. But the complete graph is often noisy and presents
computational, memory and scalability challenges to the overall
algorithm. We construct a sparse bipartite graph 𝐿 by employing
the popular 𝑘-Nearest Neighbor (𝑘NN) technique. For each vertex
of 𝐿, we choose 𝑘 least-weighted incident edges, where 𝑘 > 0.
Since 𝑘 is a constant, the number of edges of 𝐿 is reduced to 𝑂 (𝑛).
Further, 𝑘NN is widely used to construct graphs in graph based
machine learning [28] and has theoretical guarantees for quality of
representations [23, 26]. The embedding and sparsification steps
initialize the framework by creating the bipartite graph as shown in
Algorithm 1. Here, lines from 2 through 6 generate the embedding
vectors, lines 7 to 11 create the complete bipartite graph, and the
rest of the algorithm sparsifies the complete graph.

Algorithm 1: Create Bipartite Graph, 𝐿
Input: 𝐴(𝑉𝐴, 𝐸𝐴), 𝐵 (𝑉𝐵, 𝐸𝐵)
Output: 𝐿 (𝑉𝐴,𝑉𝐵, 𝐸𝐿)

1 𝐿 ←− Bipartite(𝑉𝐴,𝑉𝐵, 𝐸𝐿 = ∅)
2 𝑌1 ←− proximity_embed(𝐴)
3 𝑌2 ←− proximity_embed(𝐵)
4 𝑄 ←− solution for Equation 2
5 𝑌𝐴 ←− 𝑌1𝑄

6 𝑌𝐵 ←− 𝑌2
7 for 𝑢 ∈ 𝑉𝐴 do
8 for 𝑣 ∈ 𝑉𝐵 do
9 𝑠 ←− cosine_similarity(𝑌𝐴 (𝑢), 𝑌𝐵 (𝑣))

10 𝐸𝐿 ←− 𝐸𝐿 ∪ (𝑢, 𝑣, 𝑠)
11 𝑉𝐿 ←− 𝑉𝐴 ∪𝑉𝐵
12 for 𝑢 ∈ 𝑉𝐿 do
13 𝑁𝑢 ←− kNN(𝑢)
14 𝐸𝐿 ←− 𝐸𝐿 \ 𝑁𝑢

4.2 Belief Propagation
Quadratic Programs (QP), such as the problem represented by Equa-
tion 1, are NP-hard to solve, and therefore, need heuristics or ap-
proximate algorithms for solution. A popular heuristic to solve QPs
is to use message passing procedure known as Belief Propagation
(BP). We treat the quadratic program in Equation 1 as finding the
maximum posterior estimation of the following distribution:

𝑃 (x) = 1
𝑍
exp(𝛼x𝑇w + 𝛽/2x𝑇 Sx) Ind[Cx ≤ e], (3)

Algorithm 2: Belief Propagation
Input: 𝐿 (𝑉𝐿, 𝐸𝐿), S ∈ R|𝐸𝐿 |×|𝐸𝐿 |
Output: 𝑏𝑒𝑠𝑡𝑀

1 𝑝 ←− 0
2 S𝑐 ←− 0 where S𝑐 ∈ R|𝐸𝐿 |×|𝐸𝐿 |

3 S𝑝 ←− 0 where S𝑝 ∈ R|𝐸𝐿 |×|𝐸𝐿 |
4 for 𝑖 ∈ {1 . . . |𝐸𝐿 | } in parallel do
5 {𝑦𝑐 (𝑖), 𝑦𝑝 (𝑖), 𝑧𝑐 (𝑖), 𝑧𝑝 (𝑖), 𝑑𝑐 (𝑖), 𝑑𝑝 (𝑖) } ←− 0
6 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 0
7 𝑏𝑒𝑠𝑡𝑀 ←− ∅
8 for 𝑝 ∈ {1 . . . 𝑛𝑖𝑡𝑒𝑟 } do
9 F = 𝑏𝑜𝑢𝑛𝑑0,𝛽 [𝛽S + S𝑝𝑇]

10 𝑑𝑐 = 𝛼𝑤 + F𝑒
11 𝑦𝑐 = 𝑑𝑐 − 𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑥𝑐𝑜𝑙 (𝑧𝑝)
12 𝑧𝑐 = 𝑑𝑐 − 𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑥𝑟𝑜𝑤 (𝑦𝑝)
13 S𝑐 = 𝑑𝑖𝑎𝑔 (𝑦𝑐 + 𝑧𝑐 − 𝑑𝑐)S − F
14 𝑦𝑝 = 𝛾𝑘𝑦𝑐 + (1 − 𝛾𝑘)𝑦𝑝
15 𝑧𝑝 = 𝛾𝑘𝑧𝑐 + (1 − 𝛾𝑘)𝑧𝑝
16 S𝑝 = 𝛾𝑘S𝑐 + (1 − 𝛾𝑘)S𝑝
17 𝐸𝐿 = 𝑦𝑐

18 𝑀𝑦 = 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒_𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (𝐿)
19 𝐸𝐿 = 𝑧𝑐

20 𝑀𝑧 = 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒_𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (𝐿)
21 𝑠𝑐𝑜𝑟𝑒,𝑀 =𝑚𝑎𝑥 (𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑀𝑦, 𝑆), 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑀𝑧 , 𝑆))
22 if 𝑠𝑐𝑜𝑟𝑒 > 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 then
23 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝑠𝑐𝑜𝑟𝑒

24 𝑏𝑒𝑠𝑡𝑀 = 𝑀

where 𝑍 is an unknown normalizing constant and Ind() is the indi-
cator function. We observe that our intended QP is in fact a discrete
(binary to be exact) quadratic problem, where the goal is to generate
a matching on graph 𝐿. 𝑃 (x) relaxes the problem to real valued one
where we aim to construct a probability distribution. We employ
belief propagation to construct 𝑃 (x), which is later transformed to a
binary solution. This step is known as rounding, which is achieved
by computing a half-approximate weighted matching. We apply the
relaxation through BP and rounding through matching iteratively
until a stopping criterion is met. The final matching is our desired
solution for network alignment.

Here we provide a brief overview of the belief propagation (BP)
method. For a detailed description of the algorithm, we refer to
the work of Bayati et al. [3, 4] and Khan et al. [12]. Recall that
our objective for the NAQP formulated in Problem 1 constitutes
maximizing a linear combination of weights of the alignment and
number of overlaps. Formally, We say two edges 𝑒 (𝑖, 𝑖′), 𝑒′ (𝑗, 𝑗 ′) ∈
𝐸𝐿 overlaps if (𝑖, 𝑗) ∈ 𝐸𝐴 and (𝑖′, 𝑗 ′) ∈ 𝐸𝐵 shown in Figure 1.
Intuitively, an overlap captures the conserved relationship between
vertices in two graphs, and considered to be a generalization of
triangular (friends of friends) relationship among vertices in single
graph. This overlapping information is encoded in a matrix 𝑆 ∈
{0, 1} |𝐸𝐿 |× |𝐸𝐿 | , where the value represents if the two edges overlap
or not. Computing 𝑆 is embarrassingly parallel (Algorithm 3).

Next, we apply BP technique described in Algorithm 2 by iter-
atively updating the two weight vectors 𝑦 (𝑝) , 𝑧 (𝑝) and a weight
matrix 𝑆 (𝑝) . The first vector represents the log-likelihood of each
edge in 𝐿 occurring in the final matching given that we want each

750

cuAlign: Scalable Network Alignment on GPU Accelerators SC-W 2023, November 12–17, 2023, Denver, CO, USA

Algorithm 3: Create Overlap Matrix 𝑆
Input: 𝐴(𝑉𝐴, 𝐸𝐴), 𝐵 (𝑉𝐵, 𝐸𝐵), 𝐿 (𝑉𝐿, 𝐸𝐿,𝑊)
Output: 𝑆 ∈ {0, 1} |𝐸𝐿 |×|𝐸𝐿 |

1 for 𝑒 (𝑣,𝑢) ∈ 𝐸𝐿 in parallel do
2 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (𝑒) ←− 𝑡𝑟𝑢𝑒

3 for each neighbor 𝑢′ of 𝑢 ∈ 𝑉𝐴 do
4 for each neighbor 𝑣′ of 𝑣 ∈ 𝑉𝐵 do
5 if 𝑒′ (𝑢′, 𝑣′) ∈ 𝐸𝐿 then
6 𝑆 [𝑒] [𝑒′] = 1
7 else
8 𝑆 [𝑒] [𝑒′] = 0

vertex in graph 𝐴 matched to at most one vertex in graph 𝐵. The
second vector represents the same aspect, but given that we want
each vertex in graph 𝐵 to match to at most one vertex in graph
𝐴. The weight matrix represents the log-likelihood of overlapped
edges appearing in the solution.

At each iteration, belief propagation rules encode the logic of a
local, greedy agent that attempts to determine its own likelihood,
given the likelihoods of its neighbors computed in previous iteration
(Lines 9-12). Because of this interpretation, the weight vectors are
usually called messages as they communicate the “beliefs” of each
“agent” (Line 13). In this particular problem, the neighborhood of
an agent associated with an edge, 𝑒 ∈ 𝐿 represents the 𝑒′ ∈ 𝐿

that overlaps with 𝑒 . The weight vectors or the messages do not
generally converge [4], and thus, the iteration is artificially damped
to enforce convergence (Lines 14-16). After each update of the
messages, we round the messages by using a half-approximate
bipartite maximum weighted matching (Lines 17-20). For matching
we use the parallel algorithm described in [12], detailed in §4.3.
Finally, we evaluate the objective function (Lines 21-24).

All the matrix and vector operations (Lines 9-16) in Algorithm 2
are element-wise operations, and are therefore embarrassingly par-
allel. An important observation to make is that the overlap matrices
𝑆, 𝑆𝑐 , 𝑆𝑃 are structurally symmetric. Since all the belief propaga-
tion computations are based on the overlap matrices, sparse data
structures for vectors and matrices remain fixed. Hence, we pre-
compute the sparsity structures of the matrices and vectors once.
Only the values change during the course of the execution. This
feature of the algorithm enabled us to efficiently allocate and assign
“agents” to GPUwarps to improve performance discussed in §5. The
computation in function othermaxrow is as follows. Given a row,
replace all non-zeros in that row with the maximum value for the
row; except, for the element that is the maximum value, replace
it with the second largest value. The othermaxcol function works
similarly columns instead of rows. Since belief propagation has no
natural stopping criteria, we run it for a fixed number of iterations,
and take the best solution we find in any step of the computation.

4.3 Half-approximate Weighted Matching
While efficient serial algorithms for computing optimal matching
exist, they have limited concurrency, and therefore we consider
approximation algorithms that are not only amenable to parallel
implementations but also compute high quality solutions. We con-
sider approximation algorithms that guarantee half-approximate
solutions with respect to optimal matchings. However, in practice,
they provide solutions that are nearly optimal. Khan et al., [12]

used the locally dominant algorithm, which was first presented by
Preis [24]. An edge that is at least as heavy as all other edges inci-
dent on its two end-points is a locally dominant edge. For details
we refer you to Halappanavar et al. [10].

The locally dominant algorithm has two phases. In Phase 1, for
each vertex 𝑢, the algorithm chooses the heaviest neighbor, 𝑣 , in
terms of the corresponding edge weight,𝑤 (𝑢, 𝑣) as the candidate
mate. If the candidate mate, 𝑣 also chooses the 𝑢 as it’s candidate
mate then we call the edge, 𝑤 (𝑢, 𝑣), a locally dominant edge and
add it to the matching𝑀 . We match the endpoints of all the locally
dominant edges, and the matched vertices are added to a queue
(𝑄𝐶). In Phase 2 of the algorithm, we iterate over the queue until no
new edges get matched. During each iteration, we process vertices
matched in previous iterations and add new vertices to the queue
that become eligible by checking whether any of their unmatched
neighbors point to them. If so, those neighbors will have to find
new candidates for matching. The algorithm ends when no new
candidates are found. We use compressed sparse row (CSR) data
structure to store graphs in memory and use CUDA programming
model for parallelization. We use two queues (𝑄𝐶 and 𝑄𝑁) so
that while we efficiently process (read) the vertices matched in the
previous iteration in 𝑄𝐶 , we can enqueue (write) vertices matched
in the current iteration in 𝑄𝑁 , and thus reducing contention.

The belief propagation algorithm (Algorithm 2) has regular mem-
ory access patterns since the matrix/vector sparsity structure does
not change over during execution. In contrast, matching has irreg-
ular memory accesses. Since both of these algorithms are executed
in tandem, it is difficult to design and implement a performant
code. Thus, a major contribution of our work is the efficient design
to exploit the underlying properties of the respective algorithms
targeting GPU implementations as discussed next.

5 PARALLEL (GPU) IMPLEMENTATIONS
While the Network Alignment framework described in §4 is in-
herently parallel in CPU, there are significant challenges to imple-
menting and scaling it in GPUs. These challenges arise primarily
because of the irregular computations. Factors such as (𝑖) Load-
imbalance and thread idling, (𝑖𝑖) high data movement and low data
reuse, and (𝑖𝑖𝑖) memory access efficiency can significantly affect
the performance of the GPU implementation.
Load imbalance is a critical factor that affects the performance
of the network alignment algorithm. Directly porting the CPU al-
gorithm to GPUs will likely result in a significant load imbalance.
Both belief propagation and half-approximate matching require
accessing the neighborhood information. The number of neighbors
per node can significantly vary, especially for power-law graphs.
Assigning a single thread to process a single vertex can result in
substantial warp divergence and intra- and inter-thread-block load
imbalance. Another strategy is assigning one warp to process each
vertex’s neighbors collectively. This approach helps to achieve good
memory-access efficiency (explained in the next paragraph). In addi-
tion to the previous challenges, this strategy can cause thread-idling
(i.e., some of the threads do not have any work) if the number of
neighbors of a given vertex is less than the warp size. This approach
also suffers from intra- and inter-thread-block load imbalances.

We observe that the sparsity structure of the matrices used in
Algorithm 2 remain fixed throughout the iteration. It means the

751

SC-W 2023, November 12–17, 2023, Denver, CO, USA Lizhi Xiang, Arif Khan, S. M. Ferdous, SR Aravind, and Mahantesh Halappanavar

graph structures associated with these matrices also remain con-
stant. This allows us to employ binning to solve the load imbalance
problem. We simply group the vertices based on their degrees once
and reuse this grouping throughout the algorithm. This approach
allows us to achieve good load balance within each bin as all the
threads within a bin have similar amount of work.

Listing 1: Fused kernel corresponding to line 9 in Algorithm 2
1 / / I t e r a t e over the rows o f the ma t r i x
2 for (in t i = 0 ; i < s i z e ; ++ i) {
3 in t h= i c [i] −1 ;
4 in t t = i c [i +1] −1 ;
5 double sum = 0 ;
6 / / I t e r a t e over the columns
7 for (in t j =h ; j < t ; j ++) {
8 / / Compute the va lue in F
9 double v a l = be t a +s ^p [perm [j]] ;
10 i f (va l <0)
11 v a l =0 ;
12 e l se {
13 i f (va l > b e t a)
14 v a l = be t a ; }
15 F [j] = v a l ;
16 sum =+ va l ; / / r e d u c t i o n }
17 dc [i]=sum ; }

Binning also allows us to determine the number of threads we
should assign to process each vertex. For example, if a bin contains
nodes that have approximately 64 neighbors, then it is better to
assign each thread block with 64 threads to process each vertex.
However, when the thread block size is less than 64, say 16, even if
we only request 16 threads per thread block, the hardware will as-
sign 32 threads per thread block as the hardware can only schedule
work in terms of warps (a group of 32 threads). Hence, in the latter
case, 16 threads will be idle. In this case, it is better to assign one
thread block of size 32 and make it process two vertices. We use
the term virtual warp to represent the number of threads assigned
to process each node. We could always assign a virtual warp of
size 16 to process all bins. However, this strategy will result in
unnecessary uncoalesced memory access for high-degree nodes.
Hence we choose the virtual warp size based on bin size. Since the
virtual warp size should be a divisor (or multiple) of warp size to
avoid thread idling, we only use the virtual warp sizes from the set
{8, 16, 32, 64, 128, 256, 512}. For example, if the nodes in a given bin
have close to 16 neighbors, assigning 16 threads to process each
node will reduce tread idling. Hence for bins with vertices which
has less than or equal to 16 neighbors, we split a warp into virtual
warps (Figure 3) and assign each virtual warp to process each node.
For nodes in the remaining bins, we assign one warp per vertex.
However, launching one kernel per bin might lead to under uti-
lization at the streaming multi-processor level. For example, a bin
consists only of two nodes. Launching this kernel on an A100 GPU
will use at most two out of 84 available streaming multi-processors.
Therefore, we process bins in parallel by using CUDA streams to
launch multiple bins in parallel.

Data movement and data reuse is arguably the most important
parameter that affects performance of GPU algorithms. Our ap-
proach performs high-level code fusion and GPU architecture-aware
low-level optimizations to improve data reuse. Several steps in Al-
gorithm 2 share common data-structures. For example, consider
line 9, which produces the F matrix, and line 10, which consumes
it. GPU caches are relatively small, and due to cache eviction, it is
unlikely to get reuse of the 𝐹 matrix between these two lines. Code
fusion optimization shown in Listing 1 reduces the total number of
reads from line 9 and 10 to (2× #non-zeros in 𝑆) to (#non-zeros in
𝑆) resulting 50% reduction in data movement. Our approach also
utilized low-level memory optimizations. For example, consider
the loop in line 7 in Listing 1. Since we need to distribute this loop
among multiple threads in a warp to achieve a good load balance,
we must reduce the 𝑠𝑢𝑚 variable across multiple threads. We use
warp reductions instead of global reductions to improve perfor-
mance. Warp reductions perform reductions by only reading and
writing at the register level. Furthermore, we also utilize shared-
memory to achieve high data reuses. For example, in Algorithm 3
each neighbor of a given vertex is accessed multiple times. Hence
we keep them in shared memory.
Memory access efficiency is another factor that affects the achiev-
able performance in GPUs. Global memory coalescing is a crucial
factor that determines memory access efficiency. In GPUs, the mem-
ory request from a group of 32 threads called a warp is aggregated
by the memory controller into multiple transactions. If threads in
a warp access contiguous memory, only one memory transaction
is required; otherwise, multiple transactions are required which
degrade the performance. There are several regions in Algorithm 2,
such as lines 14-16, where we access the neighbors of a given node.
If we assign one thread per vertex, continuous threads will access
neighbors of different vertices resulting in uncoalesced access. We
could solve this by assigning one warp per vertex, in which case
contiguous threads will access the adjacent neighbors of a given
vertex, resulting in coalesced access. However, this will result in
resource under-utilization, as explained earlier.

Our approach for binning and virtual warping helps improve
memory access efficiencywithout causing resource under-utilization.
Note that our binning strategy is based on the number of neighbors
of each node. If the number of neighbors is greater than the warp
size, we assign one full warp to process it and thereby achieve full
coalescing. However, if the number of neighbors is less than warp
size, the number of threads assigned to process that vertex is less.
Let us consider a bin where the number of neighbors is at most
eight, and that we assign a virtual warp of size eight to process each
vertex in this bin. The corresponding GPU code is shown in Listing
2. The contiguous eight threads can access the continuous eight
neighbors, which is the maximum number of neighbors possible
for nodes in the given bin and thus achieves maximum possible co-
alescing. The remaining threads in the warp process other vertices.
While this causes partial uncoalescing, it avoids thread idling.

6 EXPERIMENTAL RESULTS
We now briefly describe the experimental setup, followed by the
qualitative assessment of cuAlign compared to state-of-the-art
method, and the relative GPU speedups.

752

cuAlign: Scalable Network Alignment on GPU Accelerators SC-W 2023, November 12–17, 2023, Denver, CO, USA

Listing 2: GPU kernel design for kernels corresponding to
line 13 in Algorithm 2

1
2 unsigned int warp_id = t h r e a d I d x . x / 8 ;
3 unsigned int l a n e _ i d = t h r e a d I d x . x % 8 ;
4 unsigned int g l o b a l _ i d = b l o c k I d x . x ∗ 4 +

warp_id ;
5 for (unsigned int i d = g l o b a l _ i d ; id < s i z e ; i d +=(

gridDim . x ∗ 4)) {
6 in t i = rows [i d] ;
7 vvc [i]= yc [i]+ zc [i] − a lpha ∗ wi [i] − dc [i] ;
8 in t s= i c [i] −1 ;
9 in t t = i c [i +1] −1 ;
10 i f (l a n e _ i d +s < t) {
11 sp [l a n e _ i d +s] = vvc [i] − F [l a n e _ i d +s

] ;
12 }
13 }

0 1 2 3 4 5 6 7 8 9 10 11 12 31… … … … … … … … … … … … … … … … … …

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

regular warp 32 threads

virtual warp 16 threads

virtual warp 8 threads

Figure 3: Conceptual view of virtual warp

6.1 Experimental Setup
Our experimental setup consists of an AMD EPYC 7702P 64-Core
Processor (512 GB RAM) CPUs running Ubuntu 20.04 LTS. For GPU
evaluation, we used an Nvidia Ampere A100 machine(108SMs, 40
GB global memory) with CUDA v11.1.

Network Vertices Edges
fly_Y2H1 7,094 23,356
fly_PHY1 7,885 36,271
human_Y2H1 9,996 39,984
Synthetic_4000 4,000 11,996
Synthetic_8000 8,000 63,977

Table 1: Input graphs used for empirical evaluation.

We evaluated cuAlign using three real-world graphs and two
synthetic graphs, listed in Table 1. The real-world graphs are com-
mon biological inputs in network alignment studies [7], and the
synthetic graphs are generated by methods described in [7]. For
each graph 𝐴, we created a matching pair 𝐵 = 𝑃 (𝐴), by applying
a random permutation 𝑃 on the vertices of 𝐴. The permutation 𝑃

is the true node alignment (ground truth). We input 𝐴 and 𝐵 to
cuAlignand compare the computed alignment𝑀 against the true

0.60

0.70

0.80

0.90

1.00

1.10

1.20

fly_Y2H1 fly_PHY1 human_Y2H1 Synthetic_4000 Synthetic_8000

Sc
or
e

Density

1.0% 2.5% 5.0% 7.5% 10.0% 25.0%
*NA

Figure 4: Quality of solution for different levels of density
on the CPU platform. Computation did not finish for Syn-
thetic_8000 with 25% density, whichwe represent with a large
value (> 1).

alignment 𝑃 to compute the alignment score. We use the state-of-
the-art scoring metric called 𝑁𝐶𝑉 − 𝐺𝑆3, which measures how
well the edges are conserved between two networks (i.e., overlaps)
normalized by the sizes of the networks. A detailed explanation of
various alignment scores are provided in [18, 20].

6.2 Qualitative Assessment
For qualitative assessment of cuAlign, we compare the solutions
with cone-align, a state-of-the-art algorithm [7]. Since cuAlign
uses the node embeddings from cone-align, the improvements in
quality come from the optimization components through iterative
execution of belief propagation and weighted matching techniques
described in §4. First, we investigate the impact of sparsification
on quality of cuAlign. In Figure 4, we consider the real world
protein-protein interaction networks and observe that the quality
goes down with the increase in density. We note that 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =

(100−𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦); a complete graph has 100% density. The reason for
sparsification improving the quality of solution is that the real world
data is often noisy, therefore, removing low weight edges helps our
heuristic framework to find better solution. In literature, alignment
scores greater than 80% are considered as good solutions [20] and
we observe that cuAlign achieves high quality solutionswith ≤ 10%
of total edges in 𝐿.

Next, we show the impact of sparsification on the compute time.
Since, feasible combinations for alignment becomes prohibitively
large in the complete network case (i.e., 100% density) and in Fig-
ure 5, we show how the run time increases with the increase in
density. Note, that the Y-axis in Figure 5 is logarithmic. As expected,
the run time increases significantly as we increase the density of
the graph. We conclude that sparsification not only improves the
quality of solution but also reduces the compute time significantly.

Finally, we demonstrate a significant contribution of our work
in improving the quality of solutions over the state-of-the-art al-
gorithm, cone-align. We pick 1% and 2.5% level of sparsification
and observe that our framework finds better alignments for both
sparsification levels. The improvement is up to 22% in terms of
alignment score relative to the test set (Figure 6).

753

SC-W 2023, November 12–17, 2023, Denver, CO, USA Lizhi Xiang, Arif Khan, S. M. Ferdous, SR Aravind, and Mahantesh Halappanavar

Problems BP-CPU BP-GPU Speedup (BP) Match-CPU Match-GPU Speedup (Match) Total Speedup
fly_Y2H1 400 21 19.05 19 8.3 2.29 14.03
fly_PHY1 682 48 14.21 37 12.8 2.89 11.82

human_Y2H1 1384 79 17.52 51 19.4 2.63 14.59
Synthetic-4000 29 5.75 5.04 6 2.25 2.67 4.37
Synthetic-8000 627 57 11.00 52 17.9 2.91 9.06

Table 2: Run time improvement of Belief Propagation (BP) and Matching steps using GPU accelerator.

32

64

128

256

512

1,024

2,048

4,096

8,192

fly_Y2H1 fly_PHY1 human_Y2H1 Synthetic_4000 Synthetic_8000

C
om

pu
te

 ti
m

e
(s

ec
)

Density

1.0% 2.5% 5.0% 7.5% 10.0% 25.0%
*NA

Figure 5: Compute time in seconds (log2 scale) for different
levels of density on the CPU platform. Computation did
not finish for Synthetic_8000 with 25% density, which we
represent with a large value.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

fly_Y2H1 fly_PHY1 human_Y2H1 Synthetic_4000 Synthetic_8000

Sc
or
e

Problems

1.0% 2.5% cone-align

Figure 6: Quality comparison: cuAlign vs. coneAlign

6.3 Relative Performance
Recall that cuAlign augments the cone-align by combining the
BP and matching techniques, presented by the authors in [12]. Both
BP and matching are computationally heavy. cuAlign computes
higher quality solutions over the state-of-the art cone-align by
using these additional computation. Therefore, efficient implemen-
tation of that additional computation involving belief propagation
and matching becomes critical. We provide the performance of GPU
implementation of the belief propagation and matching w.r.t., mul-
tithreaded implementation of the same in [12]. The breakdowns are
summarized in Table 2. Our GPU implementation is up to 19× faster
for belief propagation and 2.91× faster for matching, resulting in
up to 15× speedup for the entire optimization phase.

Finally, with the GPU implementation, we show in Figure 7
that the cuAlign achieves high quality solution without noticeable
degrade w.r.t. cone-align. We emphasize to the fact that cuAlign
is rather a general framework since one can easily switch the node
embedding as well as sparsification algorithms based on the domain
knowledge and obtain domain specific solution.

32

64

128

256

512

1024

fly_Y2H1 fly_PHY1 human_Y2H1 Synthetic_4000 Synthetic_8000

R
un

 ti
m

e
in

 se
co

nd
s (

lo
g-

2
sc

al
e)

Problems

1.0% 2.5% cone-align

Figure 7: Run time comparison: cuAlign-GPU vs. coneAlign
on the GPU platform

7 CONCLUSIONS AND FUTUREWORK
Network alignment is an important graph problem with numerous
applications in diverse domains of science. We have made two key
contributions in this paper. The first contribution comes from the
design of a general framework that brings together methods for
node embedding and sparsification with optimization approaches.
The second contribution comes from scaling the optimization meth-
ods onmodern GPU accelerators that provide significant computing
resources, but are hard to program. Our framework provided im-
provements in quality of solution by up to 22%. We implement
computationally heavy steps of belief propagation (BP) and graph
matching on GPUs. We show that GPU implementation improves
the BP step up to 19× and the matching step up to 3×, with up to
15× total speedups for the optimization phase.

We plan to explore the effectiveness of deep learning based node
embeddings for structural learning in the first phase of cuAlign,
along with new approaches for sparsification. We will also explore
distributed multi-GPU implementations of belief propagation and
weighted matching algorithms.

ACKNOWLEDGMENTS
The research is supported in part by the U.S. DOE Exascale Comput-
ing Project’s (ECP) (17-SC-20-SC) ExaGraph codesign center and

754

cuAlign: Scalable Network Alignment on GPU Accelerators SC-W 2023, November 12–17, 2023, Denver, CO, USA

Laboratory Directed Research and Development Program at Pacific
Northwest National Laboratory (PNNL). S M Ferdous is grateful
for the support of the Linus Pauling Distinguished Postdoctoral
Fellowship program.

REFERENCES
[1] Ahmet E Aladağ and Cesim Erten. 2013. SPINAL: scalable protein interaction

network alignment. Bioinformatics 29, 7 (2013), 917–924.
[2] Nir Atias and Roded Sharan. 2012. Comparative analysis of protein networks:

hard problems, practical solutions. Commun. ACM 55, 5 (2012), 88–97.
[3] Mohsen Bayati, Margot Gerritsen, David F Gleich, Amin Saberi, and Ying Wang.

2009. Algorithms for large, sparse network alignment problems. In 2009 Ninth
IEEE International Conference on Data Mining. IEEE, 705–710.

[4] Mohsen Bayati, David F. Gleich, Amin Saberi, and Ying Wang. 2013. Message-
Passing Algorithms for Sparse Network Alignment. ACM Trans. Knowl. Discov.
Data 7, 1, Article 3 (mar 2013), 31 pages.

[5] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. 2012. Assignment
problems: revised reprint. SIAM.

[6] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-
prehensive survey of graph embedding: Problems, techniques, and applications.
IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[7] Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. 2020. Cone-
align: Consistent network alignment with proximity-preserving node embedding.
In Proceedings of the 29th ACM International Conference on Information & Knowl-
edge Management. 1985–1988.

[8] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. Thirty
years of graph matching in pattern recognition. International journal of pattern
recognition and artificial intelligence 18, 03 (2004), 265–298.

[9] Catherine Fraikin, Yurii Nesterov, and Paul Van Dooren. 2008. A gradient-type
algorithm optimizing the coupling between matrices. Linear Algebra Appl. 429,
5-6 (2008), 1229–1242.

[10] Mahantesh Halappanavar, John Feo, Oreste Villa, Antonino Tumeo, and Alex
Pothen. 2012. Approximate weighted matching on emerging manycore and multi-
threaded architectures. The International Journal of High Performance Computing
Applications 26, 4 (2012), 413–430.

[11] Wei Hu, Yuzhong Qu, and Gong Cheng. 2008. Matching large ontologies: A
divide-and-conquer approach. Data & Knowledge Engineering 67, 1 (2008), 140–
160.

[12] Arif M Khan, David F Gleich, Alex Pothen, and Mahantesh Halappanavar. 2012.
A multithreaded algorithm for network alignment via approximate matching. In
SC’12: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–11.

[13] Gunnar W Klau. 2009. A new graph-based method for pairwise global network
alignment. BMC bioinformatics 10, 1 (2009), 1–9.

[14] David Knossow, Avinash Sharma, Diana Mateus, and Radu Horaud. 2009. Inexact
matching of large and sparse graphs using laplacian eigenvectors. In International
workshop on graph-based representations in pattern recognition. Springer, 144–153.

[15] Giorgos Kollias, Shahin Mohammadi, and Ananth Grama. 2011. Network simi-
larity decomposition (nsd): A fast and scalable approach to network alignment.
IEEE Transactions on Knowledge and Data Engineering 24, 12 (2011), 2232–2243.

[16] Giorgos Kollias, Madan Sathe, Olaf Schenk, and Ananth Grama. 2014. Fast parallel
algorithms for graph similarity and matching. J. Parallel and Distrib. Comput. 74,
5 (2014), 2400–2410.

[17] Nitish Korula and Silvio Lattanzi. 2013. An efficient reconciliation algorithm for
social networks. arXiv preprint arXiv:1307.1690 (2013).

[18] Oleksii Kuchaiev, Tijana Milenković, Vesna Memišević, Wayne Hayes, and Nataša
Pržulj. 2010. Topological network alignment uncovers biological function and
phylogeny. Journal of the Royal Society Interface 7, 50 (2010), 1341–1354.

[19] Konstantin Makarychev, Rajsekar Manokaran, and Maxim Sviridenko. 2010. Max-
imum quadratic assignment problem: Reduction from maximum label cover and
lp-based approximation algorithm. In International Colloquium on Automata,
Languages, and Programming. Springer, 594–604.

[20] Lei Meng, Aaron Striegel, and Tijana Milenković. 2016. Local versus global
biological network alignment. Bioinformatics 32, 20 (2016), 3155–3164.

[21] Misael Mongiovì and Roded Sharan. 2013. Global alignment of protein–protein
interaction networks. In Data Mining for Systems Biology. Springer, 21–34.

[22] Rob Patro and Carl Kingsford. 2012. Global network alignment using multiscale
spectral signatures. Bioinformatics 28, 23 (2012), 3105–3114.

[23] Alex Pothen, S. M. Ferdous, and Fredrik Manne. 2019. Approximation algorithms
in combinatorial scientific computing. Acta Numerica 28 (2019), 541–633.

[24] Robert Preis. 1999. Linear time 1/2-approximation algorithm for maximum
weightedmatching in general graphs. InAnnual Symposium on Theoretical Aspects
of Computer Science. Springer, 259–269.

[25] Ryan A Rossi, Di Jin, Sungchul Kim, Nesreen K Ahmed, Danai Koutra, and
John Boaz Lee. 2020. On proximity and structural role-based embeddings in
networks: Misconceptions, techniques, and applications. ACM Transactions on

Knowledge Discovery from Data (TKDD) 14, 5 (2020), 1–37.
[26] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. 2011. Local Graph

Sparsification for Scalable Clustering. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data (Athens, Greece) (SIGMOD ’11).
ACM, New York, NY, USA, 721–732. https://doi.org/10.1145/1989323.1989399

[27] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2007. Pairwise global alignment of
protein interaction networks by matching neighborhood topology. In Annual
international conference on research in computational molecular biology. Springer,
16–31.

[28] Amarnag Subramanya and Partha Pratim Talukdar. 2014.
Graph-Based Semi-Supervised Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning 8, 4 (2014), 1–
125. https://doi.org/10.2200/S00590ED1V01Y201408AIM029
arXiv:https://doi.org/10.2200/S00590ED1V01Y201408AIM029

[29] Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and Aravind
Sukumaran-Rajam. 2021. cuTS: scaling subgraph isomorphism on distributed
multi-GPU systems using trie based data structure. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1–14.

[30] L. Zeng, L. Zou,M. T. Özsu, L. Hu, and F. Zhang. 2020. GSI: GPU-friendly Subgraph
Isomorphism. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE). 1249–1260. https://doi.org/10.1109/ICDE48307.2020.00112

[31] Si Zhang, Hanghang Tong, Jiejun Xu, Yifan Hu, and Ross Maciejewski. 2019.
Origin: Non-rigid network alignment. In 2019 IEEE International Conference on
Big Data (Big Data). IEEE, 998–1007.

755

https://doi.org/10.1145/1989323.1989399
https://doi.org/10.2200/S00590ED1V01Y201408AIM029
https://arxiv.org/abs/https://doi.org/10.2200/S00590ED1V01Y201408AIM029
https://doi.org/10.1109/ICDE48307.2020.00112

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Related Work
	4 The Framework
	4.1 Embeddings and Sparsification
	4.2 Belief Propagation
	4.3 Half-approximate Weighted Matching

	5 Parallel (GPU) Implementations
	6 Experimental Results
	6.1 Experimental Setup
	6.2 Qualitative Assessment
	6.3 Relative Performance

	7 Conclusions and Future Work
	Acknowledgments
	References

